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FORMATION OF REACTIVE TRICYCLIC INTERMEDIATES VIA THE INTRAMOLECULAR CYCLOPROPANATION OF
DIHYDROPYRANS. SYNTHESIS OF EUCALYPTOL

Julian Adams* and Michel Belley
Merck Frosst Canada Inc.
P.0. Box 1005, Pointe Claire-Dorval, Québec, Canada, HIR 4P8

Summary: Tricyclic compound 3 was synthesized via a cyclopropanation reaction promoted by
[Rh(0Ac)31». This highly strained compound was found to undergo selective chemical
transformations to give [2.2.2] oxa-bicyclic ketones. This methodology was applied in a total
synthesis of the monoterpene, eucalyptol.

The reaction of a-diazo carbonyl compounds with olefins, mediated by transition metal
catalysts, provides a useful route to cyc]opropanes.1 Mechanistically, the reaction involves
the addition of the keto-carbene to a carbon-carbon double bond. The intermolecular reaction of
keto-carbenes and olefins requires a high concentration of the olefin {usually as the solvent)
since dimerization of the carbene is usually a faster reaction than cyc]opropanat'ion.2 Due to
this Timitation many researchers have chosen to exploit this reaction in an intramolecular sense,
thus obviating the carbene dimerization problem. Upon surveying the literature we noted that the
vast majority of the intramolecular cyclopropanations studies to date have been systems which
produce bi- or tricyclic carbocyc1es.3 This paper describes our efforts to produce novel oxygen
heterocycles by the intramolecular cyclopropanation of cyclic enol ethers. Furthermore, the
reactivity of the strained oxa-tricyclic system was explored under a variety of reaction
conditions, to produce regiospecific fragmentation of the cyclopropane ring to unveil novel
[2.2.2] oxabicyclooctanones.

Beginning with the commercially available 3,4-dihydro-2H-pyran-2-carboxylic acid, sodium salt
1, we were able to produce the corresponding o-diazo ketone 2 by a two-step procedure
outTined in Scheme I. Addition of a catalytic amount (2 weight %) of [Rh(OAc)2]2 in
CH,C1, at room temperature produced an efflux of nitrogen gas and provided the desired

2 2 s
tricyctic cyclopropy? ketone 3.
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The ease of cyclopropanation underscores the mildness of the rhodium II catalyst. Attempts
with traditional copper catalysts provided only decomposition products. Another factor promoting
the reaction is that the double bond is electron rich (due to the a-oxygen) and the keto-carbene
is electronically deficient (due to the carbonyl}.

Catalytic hydrogenation of 3 cleanly reduced the cyclopropane ring to give the bicyclic ketone
4 as the major product along with a mixture of epimeric alcohols 5a,b resuiting from a
subsequent reduction of 4. Bicyclic compound 4 has been described only once before in an
8-step synthesis.5
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f) Me,CuLi/BF3Et,0/Et20 -78°C 5min—=0°C 30min

Dissolution of oxa-tricycle 3 in acidic (catalytic pTsOH) MeOH cleanly produced a mixture of

epimeric cyclic methyl acetals 6a and 6b in a ratio of 3:1. The corresponding reaction was
seen to occur using thiophenol (catalytic pTSOH/THF), to give a 5:1 mixture of thio-acetals 7a
and 7b. We reasoned that this mechanism occurs via an acid catalyzed unimolecular fragmentation
of 3 to form the oxonium enol 8 which reacts with the nucleophile preferentially on the less
hindered side (the enol).6 However, when thiolate anion was used (thiophenol, NaH/THF, 110°C,
sealed tube) nucleophilic opening via an SN2 mechanism produced only 7b, with the thiophenyl
group on the side opposite the carbonyl.
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Attempts to achieve nucleophilic opening reactions using carbon nucleophiles in homo-conjugate
fashion resulted only in 1,2 addition to the carbony1.7 Organometallic reagents Meii, MeMgBr
and tBuLi reacted on the less hindered face of the carbonyl (exo) giving carbinols 9 and 10, while
Me2CuL1 delivered a methg] group on the more hindered concave part of the molecule affording
exclusively carbinol 11.° A rationalization for the opposite stereoselection of the cuprate
reaction lies in the belief that the ring ether oxygen serves to complex the copper cation masking
the convex face of the molecule and the nucleophile is delivered from the opposite side.
Homo-conjugate opening of the cyclopropane ring with HeZCuL1 was finally achieved in the
presence of BF?.EtZO.9 This reaction probably proceeds via an oxonium-boron enolate
zwitterion 12, Oa which is alkylated to give a 1:1 mixture of epimers 13a,b.
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This reaction allowed us to design a short synthesis of the monoterpene, euca]yptolw

(Scheme IV). Beginning with the known dihydraopyran 14,” the diazoketone 15 was prepared
using the modified procedure of Harmon et al.l2 Cyclization, mediated by [Rh(OAc)2]2
proceeded very smoothly to produce oxa-tricyclanone 16. Homo-conjugate addition of
HezcuLi/BFB.Et 0 afforded bicyclic ketone 17, itself an oxidative metabolite of
euca]yptol.m' This constitutes a formal synthesis of eucalyptol since the Clemmensen

reduction of 17 has been reported.”
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In conclusion, the formation of strained tricyclic heterocycles such as 3 or 16 provides a
useful entry into oxa-bicyclic compounds by relying on the reqioselective fragmentation of the
cyclopropane ring. We are also interested in expanding this approach to different ring sizes, and
will soon report syntheses of substituted 7- and 8-membered rings.
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